ik heb een opdracht gekregen om een bewijs te zoeken maar kan niks vinden.
ik moet bewijzen dat de oppervlakte van een driehoek met zijden a, b, c gelijk is aan de wortel van sx(s-a)x(s-b)x(s-c) waarbij s = 1/2x(a+b+c)
ik hoop dat jullie mij hierbij kunnen helpen.dyon beuken
10-5-2005
als je s*(s-a)*(s-b)*(s-c) uitwerkt krijg je:
1/16*(2a2b2+2a2c2+2b2c2-a4-b4-c4) (ga dat zelf na).
Bekijk nu onderstaande tekening:
Voor de hoogtelijn h krijgen we:
h2=a2-x2=b2-(c-x)2
Er geldt dus
a2-x2=b2-c2+2cx-x2
Hieruit volgt:
x=(a2+c2-b2)/(2c) (ga na)
Dus h2=a2-x2=a2-(a2+c2-b2)2/(4c2)
Het kwadraat van de oppervlakte is 1/4h2*c2=
1/4a2c2-1/16(a2+c2-b2)2
Als je deze uitdrukking vereenvoudigt krijg je weer:
1/16*(2a2b2+2a2c2+2b2c2-a4-b4-c4).
(Ga dat zelf na)
Ga nu na dat het bewijs is geleverd.
hk
11-5-2005
#37860 - Vlakkemeetkunde - Leerling onderbouw vmbo-havo-vwo