WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Extremen bepalen dmv tweede afgeleide

Functie f heeft een extreem f(a). f'(a)=0 en f"(a)=0. Is f(a) een maximum of minimum?
Het enige wat ik kan bendenken is: tweede afgeleide is negatief, dus afgeleide daalt....

een dalende afgeleide zegt verder toch niets over het verloop van de oorspronkelijke functie? Of zeg ik nu iets heel doms?

Alvast bedankt. Groetjes, Sughatrie

Sughatrie
19-4-2005

Antwoord

Tweede afgeleide positief: de afgeleide wordt groter.
Als de functie dalend is, begint ze minder snel te dalen.
Als de functie stijgend is, begint ze sneller te stijgen.
De functie heeft met andere woorden een bol verloop.

Tweede afgeleide negatief: de afgeleide wordt kleiner.
Als de functie dalend is, begint ze sneller te dalen.
Als de functie stijgend is, begint ze minder snel te stijgen.
De functie heeft met andere woorden een hol verloop.

Kijk naar de vorm van de mond bij de mannetjes

Positief - goed nieuws -
Negatief - slecht nieuws -

Zie je nu ook in wat er bij een positieve tweede afgeleide hoort, wanneer de eerste nul is ? Minimum of maximum ?

PS: Je kan hier een theoretischere afleiding van geven, maar ik ben niet zeker of je die wel nodig hebt...

cl
19-4-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#36993 - Differentiëren - Iets anders