WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Integraal van sec³x

deze integraal lukt me echt niet
heb alles geprobeerd

cosx/cos^4x ;
-- d(sin x)/(1-sin2)2

hooformule omgevormd e.d. lukt echt niet
als tip is er gegeven

intgr(sec x) = intgr((sec x(sec x + tan x))/(sec x + tan x))

u = sec x + tan x)

- intgr(du/u)

maar geen idee hoe je het moet doen met sec3
:(

alvast bedankt

yannick
23-3-2005

Antwoord

Hoi Yannick,

hoe je hier de tip moet gebruiken zie ik ook niet zo snel, maar je kunt wel de standaardmethode voor dit soort integralen toepassen:

Zoals jij al schrijft kun je de substitutie u = sin(x) gebruiken om te komen tot de integraal du/(1-u2)2. Vervolgens kun je dan gaan breuksplitsen...
Succes,

Guido Terra

Met dank aan medebeantwoorders Klaas Nevels en bezoeker Hendrik L is ook een antwoord met gebruikmaking van de door jou genoemde hint gepubliceerd, zie Re: Integraal van sec³x. In de notatie van Klaas Nevels:

ò sec^3(x) dx = ò sec(x) d(tan(x)) = sec(x) tan(x) - ò tan(x) d(sec(x)) = sec(x) tan(x) - ò sec(x) tan^2(x) dx = sec(x) tan(x) - ò sec(x)(sec^2(x)-1) dx = sec(x) tan(x) - ò sec^3(x) dx + ò sec(x) dx, dus ò sec^3(x) dx = 1/2 sec(x) tan(x) + 1/2 ò sec(x) dx.
En dan kun je de hint toepassen op ò sec(x) dx.

gt
24-3-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#35834 - Integreren - 3de graad ASO