Hallo Wisfaq,
Bewijs dat het kwadraat van een op de x-as loodrecht staande koorde der parabool met vergelijking y2=2px,gelijk is aan 8 maal het product van de afstand van deze koorde tot de topraaklijn met de afstand van het brandpunt tot de richtlijn(alles in rechthoekige coördinaten)
Graag wat indicaties aub.
Groeten,
Hendrikhl
1-3-2005
De koorde staat loodrecht op de x-as.
Dus is de vergelijking van deze koorde : x = a.
De snijpunten van de koorde met de parabool zijn dan
s1(a,Ö(2.p.a)) en s2(a,-Ö(2.p.a).
De lengte van de koorde |s1,s2| = 2.Ö(2.p.a).
Het kwadraat is dus 8.p.a (1)
De afstand van de koorde tot de topraaklijn is gelijk aan a.
De coördinaat van het brandpunt is (p/2,0). De vergelijking van de richtlijn is x = -p/2. De afstand tussen brandpunt en richtlijn is dus p.
Dus 8.a.p (1) = 8.a.p
LL
1-3-2005
#34714 - Analytische meetkunde - Ouder