Zij ABCD een parallellogram en P een willekeurig punt in de ruimte. Bewijs dat de zwaartepunten van de viervlakken PABC,PBCD,PCDA,PDAB de hoekpunten zijn van een parallellogram.
thanksgiovanni armani
16-2-2005
Hallo, Giovanni.
Je moet aantonen dat Z1Z2 evenwijdig is aan Z3Z4, en Z1Z3 evenwijdig aan Z2Z4.
Gebruik hierbij dat AD evenwijdig is aan CB, en BD evenwijdig aan CA.
U hebt Z1,Z2,Z3,Z4 al uitgerekend.
Reken nog een beetje verder:
Z1-Z2=1/4(A-D), Z3-Z4=1/4(C-B). Omdat AD evenwijdig is aan CB, zijn A-D en C-B gelijkgericht of tegengesteld gericht. Dat geldt dan ook voor Z1-Z2 en Z3-Z4. Daaruit volgt dat Z1Z2 evenwijdig is met Z3Z4.
Evenzo: Z1-Z3=1/4(B-D), Z2-Z4=1/4(C-A). Omdat BD evenwijdig is aan CA volgt dat Z1Z3 evenwijdig is aan Z2Z4.
hr
18-2-2005
#34069 - Ruimtemeetkunde - 3de graad ASO