WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Goniometrie (sec en cosec)

Ik heb een oefening gekregen waar ik maar niet aan uit kan.
Kun je me A.U.B helpen??
hij gaat zo:
het punt P is het beeldpunt op de goniometrische cirkel van een georiënteerde hoek waarvan a een waarde is, dus P(cosa,sina). De loodlijn door P op de rechte OP snijdt de x-as en y-as respectievelijk in de punten U en V.
Bewijs dat co(U)= (seca,0) en co(V)=(0, cosec a)
Kun je me A.U.B op weghelpen
groetjes en dank bij voorbaat

anniek
13-2-2005

Antwoord

Allereerst: ken je de definities van 'sec' en 'cosec'?
Iets als 'sec' is omgekeerde van de 'cos' en 'cosec' is omgekeerde van de 'sin'?
Of heb je de definities (in een rechthoekige driehoek) geleerd als:
- sec = schuine zijde gedeeld door aanliggende zijde;
- cosec = schuine zijde gedeeld door overstaande zijde?
Dan kijken we naar onderstaande figuur.
q33968img1.gif
In driehoek OUP: cos(a) = 1 /OU, dus sec(a) = OU
En waarom is in driehoek OVP: Ð(OVP) = a?
In die driehoek: sin(a) = 1 / OV, dus cosec(a) = OV.

En doe dan maar iets met de functie co(van een punt).

dk
13-2-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#33968 - Goniometrie - 3de graad ASO