WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Hoekgrootte van de tetraëder

Wat bedoelt u precies met het volgende?! :

"Nu moet je alleen nog even gebruiken dat de top van de piramide recht bóven het zwaartepunt van het grondvlak ligt en dat dat zwaartepunt de zwaartelijn verdeelt in de verhouding 1:2"

Dat snap ik niet helemaal...

Charlotte
10-2-2005

Antwoord

Kijken we naar 'het grondvlak' van een tetraëder (een gelijkzijdige driehoek!):

q33903img1.gif

De top van de tetraëder ligt precies recht boven het zwaartepunt M. M ligt op BN (een zwaartelijn), zodat BM=2·NM.

Zie ook De oppervlakte en inhoud van een tetraëder

WvR
11-2-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#33903 - Ruimtemeetkunde - Leerling bovenbouw havo-vwo