Ik ben bezig met de volgende opgave:
Een kegel heeft een hoogte van h = 15 en een straal r = 8. Door het hart van de kegel wordt een cilindrisch gat geboord met een diameter d = 2. Bereken de inhoud van het resterende deel van de kegel.
Ik heb de inhoud van de kegel uitgerekend: ong 1005,31
De inhoud van de hele cilinder is: ong 47,12
Het probleem is dat je niet zomaar het verschil van deze twee kunt nemen, omdat je dan teveel van de inhoud afhaald. Hoe bepaal je de hoogte van de cilinder en de inhoud van de bovenste kegel.(Maak een klein schetsje, dan wordt duidelijk wat ik bedoel).Paul
27-1-2005
Beste Paul,
Door de 2 inhouden van elkaar af te trekken gaan we inderdaad teveel inhoud weghalen.
Wat we kunnen doen is ons probleem in twee splitsen, het gedeelte waar de cilinder nog een stuk buiten de kegel is en het gedeelte waar de cilinder er volledig in zit.
We verdelen onze kegel dus in twee, we hebben dan een (grotere) 'afgeknotte kegel' (K1) en een kleinere kegel bovenaan (K2).
Van K2 zullen we ons niets meer hoeven aan te trekken, deze inhoud verdwijnt toch volledig.
We kiezen K1 nu zodanig dat de straal van zijn bovenste cirkeloppervlak gelijk is aan 1, precies de straal van de cilinder. Onderaan K1 is de straal nog steeds 8 natuurlijk.
Vermits er een lineair verband is tussen de straal en de hoogte, kunnen we ook de nieuwe hoogte berekenen.
De straal is immers 1 waar de hoogte 7*15/8 is.
Besluit van K2:
Nieuwe hoogte: 13.125
Grote straal: R = 8
Kleine straal: r = 1
Verder moet je nu alleen opletten dat we er ook een 'kleinere' cilinder van moeten aftrekken, namelijk met dezelfde hoogte.
Tot slot geef ik je nog de formule voor de inhoud van een afgeknotte kegel:
V = 1/3*p*h*(R2+Rr+r2)
Nu is het nog even toepassen van formules en uitrekenen
mvg,
Tom
td
27-1-2005
#33321 - Oppervlakte en inhoud - Student hbo