WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Re: Getallen en cirkel

Hallo jADEX?
Dank U voor het vlugge antwoord.Kunt U nog wat verduidelijke van:Hoe kom je aan deze resultaten?Eigenlijk, de redenering die er achter zit...
Vriendelijke groeten,
Hendrik.

hl
21-1-2005

Antwoord

Het betreft 100 getallen met de som 100. Betekent een gemiddelde dat uitkomt op 1. In feite kun je dan bewijzen dat de som van elk zestal in ieder geval 6 moet zijn. Stel namelijk dat er ergens een zestal is met een som van minder dan 6 dan moet er ook ergens een zestal bestaan met een som van meer dan 6. En dat mag niet.
Nu de complicatie dat het er 100 zijn. Dat betekent een zestal + 4. Concreet is de grootst gemene deler van 100 en 6 = 2. Dat betekent dan dat je dat gemiddelde van 1 op elk tweetal al moet realiseren. En dat geeft slechts één mogelijke oplossing !!
Had je 99 getallen dan moet je het gemiddelde van 1 op elk drietal realiseren. In dat geval zijn er oneindig veel oplossingen. Eentje daarvan is 6, -2, -1, 6, -2, -1, 6, -2, -1, ....

Met vriendelijke groet
JaDeX

jadex
21-1-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#32993 - Numerieke wiskunde - Ouder