WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Stuksgewijze continuïteit

Ik zit met een dilemma. In mijn syllabus staat dat de functie sgn(x) stuksgewijs continu is in ]-1,1[. Even verder staat er dat de functie 1/x niet stuksgewijs continu is in ]-1,1[. Heeft dat te maken met het feit dat de linker- en rechterlimiet in 0 bij sgn(x), een getal is en dat dat bij 1/x niet het geval is?

Lucien Romagnoli
11-1-2005

Antwoord

Beste Lucien,

Je hebt het bij het rechte eind.

Een functie heet stuksgewijs continu op een interval (a,b) indien die functie er overal continu is behalve in een eindig aantal punten.
In die punten moeten zowel linker- als rechterlimieten bestaan, voor sgn(x) is dit wel het geval maar voor 1/x vind je oneigenlijke limieten.

mvg,
Tom

td
11-1-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#32382 - Functies en grafieken - Student universiteit