Hallo
Ook ik heb hier moeite mee... Maar stel je weet geen enkel nulpunt (nulpunt 2i is dus niet gegeven). En je moet ze toch alle 4 zoeken, hoe doe je dat dan?
Ik weet dat je, in dit geval de delers van 8 zoekt: -1, 1, -2, 2, 4 en -4. En als de functiewaarde 0 is, dan is dit een nulpunt.
In deze oefening ligt het nog gemakkelijk: via bovenstaande uitleg vind je dat de nulpunten -1 en -2 zijn. En dan heb je een eenvoudige tweedegraadsfunctie waar je de complexe nulpunten kunt uit vinden...
Maar wat bij een functie (graad 2) met n COMPLEXE nulpunten?? Hoe vind je deze dan?? Hier bevindt mijn probleem zich...
En wat bedoelt de beantwoorder van de vraag met z*?
Bedankt voor de hulp :-)Nick
31-12-2004
Met z* bedoel ik het complex toegevoegde van z.
De truuk met de delers werkt alleen als
* de coefficienten van de veelterm gehele getallen zijn (of rationale getallen, die je dan geheel kan maken door te vermenigvuldigen met een gemeenschappelijk veelvoud van de noemers)
* je tevreden bent met enkel de rationale wortels van de veeltermfunctie
En inderdaad als je geen enkel nulpunt weet en er blijken er ook geen rationale te zijn, dan heb je een probleem. En dat probleem is in het algemeen niet oplosbaar. Voor graad 3 en graad 4 bestaan er nog formules a la de discriminant-formule (abc formule) voor graad 2, maar bij hogere graden loopt het mis. Je kan zelfs bewijzen dat het voor hogere graden in principe onmogelijk is een algebraische uitdrukking te vinden die die wortels oplevert.
Ik denk wel dat het mogelijk moet zijn om complexe wortels te vinden wanneer zowel die wortels als de coefficienten complexe getallen zijn met rationaal reeel en complex gedeelte, met een truuk die sterk gelijkt op die die ik al noemde, maar daar zou ik eens moeten over nadenken.
cl
31-12-2004
#31888 - Complexegetallen - Student Hoger Onderwijs België