WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Deelbaarheid door 13

Heyy
Wij zijn een opdracht aan't maken over deelbaarheid. We hebben bijna alle onderwerpen al. Het enige waar we totaal niet uitkomen is deelbaarheid door 13. Omdat het een priemgetal is lopen we een beetje vast.. kunnen jullie ons heeeeeeeeeel ajb helpen?? Groetjes Mijntje en Saskia.

Mijntje en Saskia
20-12-2004

Antwoord

Volgens Dr.Math:
Delete the last digit from the given number. Then subtract nine times the deleted digit from the remaining number. If what is left is divisible by 13, then so is the original number.
Dat is al mooi... eens kijken of ik dat snap!

Is 2743 deelbaar door 13!?
Het laatste cijfer weglaten en dan 9·3 er af, dus 274-27=247
Het laatste cijfer weglaten en dan 9·7 er af, dus 24-63=-39
-39 is deelbaar door 13, dus 2743 is deelbaar door 13.

Of dezelfde pagina staat ook nog een andere manier:
Instead of deleting the last digit and subtracting it ninefold from the remaining number (which works), you could also add the deleted digit fourfold. Both methods work because 91 and 39 are each multiples of 13.
Bij 2743 zou dat dan zo gaan:

Is 2743 deelbaar door 13?
3 weglaten 4·3 erbij is 274+12=286
6 weglaten 4·6 erbij is 28+24=52
2 weglaten 4·2 erbij is 5+8=13
13 is deelbaar voor 13, dus 2743 is deelbaar door 13.

Handig wel..

Zie Math Tips & Tricks - Divisibility Rules [http://mathforum.org/k12/mathtips/division.tips.html]

WvR
20-12-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#31555 - Getallen - Leerling onderbouw vmbo-havo-vwo