WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Meetkundige betekenis inproduct

Kan iemand mij de meetkundige betekenis van het inproduct uitleggen?

kelly
2-12-2004

Antwoord

Het inproduct van twee vectoren x, y geven we aan met (x , y). Noem de eindpunten van de vectoren A en B, beide met O als beginpunt.

In driehoek OAB is volgens de cosinusregel:
|AB|2 = |OA|2 + |OB|2 - 2·|OA|·|OB|·cos($\angle$AOB)
Omgezet naar vectoren, aangegeven met de letters a en b:
|a-b|2 = |a|2 + |b|2 - 2·|a|·|b|·cos($\angle$AOB)
Het linker lid uitgewerkt geeft:
|a-b|2 = (a-b , a-b) = (a , a) + (b , b) - 2·(a , b)
of
|a-b|2 = |a|2 + |b|2 - 2·(a , b)

Zodat:
(a , b) = |a|·|b|·cos($\angle$AOB)
Met andere woorden:

$\angle$AOB = arccos( (a , b) / (|a|·|b|) )

Iets meer(?) meetkundig kan het ook. Kijk daartoe naar de volgende figuur.
q30777img1.gif

Ga zelf na, dat het inproduct iets te maken heeft met de oppervlakte van het parallellogram OBB'A.

dk
2-12-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#30777 - Vlakkemeetkunde - 2de graad ASO