WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Hyperbool: afstand brandpunt tot asymptoot

De afstand van een brandpunt tot een asymptoot is gelijk aan de halve lengte van de nevenas. Bewijs met asymptoten werken in de hyperbool gaat, maar hoe bepaal je de afstand moet ik eerst de hyperbool tekenen, op een assenstelsel? Wat bedoelen ze met een nevenas?

Kan je me helpen?
Met dank bij voorbaat

G
17-11-2004

Antwoord

Er is een formule waarmee je de afstand van een punt tot een lijn kan uit rekenen:
lijn m: ax + by + c = 0
punt P: (p, q}
Dan is:

d(P,m) = |ap + bq + c| / √(a2 + b2)

Kiezen we als vergelijking van de hyperbool:
x2 / a2 - y2 / b2 = 1

Als a $>$ b, dan is a de (lengte van de) hoofdas; b is dan de (lengte van de) nevenas.

Is a2 + b2 = c2, dan is een brandpunt (bijv.) F(c, 0).

Tja, en dan de vergelijkingen van de asymptoten...
Ik heb zelf ooit geleerd (en onthouden):

x2 / a2 - y2 / b2 = 0

Dus één van beide asymptoten:
x / a - y / b = 0
Schrijf deze vergelijking in de gedaante
.. x + .. y + .. = 0

De rest laat ik aan jou.

dk
18-11-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#30077 - Analytische meetkunde - 3de graad ASO