WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Oplossen met behulp van standaardformules

Ik heb wat problemen met het oplossen van goniometrische vergelijkingen. Het oplossen m.b.v. het tekenen van de grafiek van de functies gaat me inmiddels goed af, maar het probleem zit in het oplossen met de standaardformules van goniometrische functies, bijvoorbeeld:

sin(3x-2)=-1
(3x-2)=3p/2 +k.2p
3x=2+3p/2+k.2p
x=2/3+p/2+k.2p/3

...en...

sin(x)/cos(x)=sin (x)
1/cos(x)=1 Ú sin(x)=0
cos(x)=1 Ú x=k.p
x=k.2p Ú x=k.p

...en...

(sin(x)+cos(x))2=1+0,5Ö2
(sin(x))2+(cos(x))2+2sin(x)cos(x)=1+0,5Ö2
1+2sin(x)cos(x)=1+0,5Ö2
sin(2x) = 0,5Ö2
2x=p/4+k.2p Ú 2x=3p/4+k.2p
x=p/8+k.p Ú x=3p/8+k.p

Ik hoop dat u me kunt uitleggen hoe dit precies zit,
alvast reuze bedankt!

loes
15-11-2004

Antwoord

Er zijn in de praktijk maar drie types vergelijkingen die je zult tegenkomen.
Dat zijn achtereenvolgens
1) sinx = sinA
2) cosx = cosA
3) tanx = tanA.

De oplossingsseries zijn in volgorde:
x = A + k.2p of x = p - A + k.2p

en

x = A + k.2p of x = -A + k.2p

en

x = A + k.p

Je zult daarom elke som die je gaat maken moeten terugbrengen tot een van deze 3 soorten. Daarnaast moet je uiteraard een paar vaste waarden weten, zoals sin1/2p = 1.

Je eerste vergelijking wordt nu sin(3x-2) = sin11/2p en de conclusie is dan 3x-2 = 11/2p + k.2p of 3x-2 = p - 11/2p + k.2p enz.

De tweede vergelijking kun je bijv. aanpakken via sinx = sinx.cosx en dan sinx = 0 of cosx = 1.
Dit geeft sinx = sin0 of cosx = cos0 en dan kun je weer de bovenstaande strategie volgen.

In je derde vergelijking wordt eerst het linkerlid uitgewerkt en na sin2x + cos2x = 1 te hebben gebruikt reduceert alles zich tot sin2x = 1/2Ö2.
Als je dan nog weet dat sin1/4p = 1/2Ö2, dan loopt de rest vanzelf (hoop ik).

Als troost: goniometrische vergelijkingen zijn voor velen lastig omdat je maar moet 'weten' welke formule(s) je nodig hebt.

MBL
20-11-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#29969 - Goniometrie - Leerling bovenbouw havo-vwo