WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Bewijs: snijpunt cirkel, raaklijn van ellips en loodlijn

Ik heb deze opgave gekregen en heb geen idee hoe ik hieraan zou kunnen beginnen. Kan iemand mij op weg helpen?

Teken een ellips en een cirkel met straal a (helft van de hoofdas van de ellips), teken een raaklijn aan de ellips en een loodlijn daarop, die door het brandpunt van de ellips gaat. Bewijs dat de raaklijn, loodlijn en cirkel in 1 punt snijden.

Diede
10-10-2004

Antwoord

Staat wat je zoekt niet op de pagina die via onderstaande link bereikbaar is?
Daar staat een 'meetkundig' bewijs.

Als je een 'analytisch' bewijs zoekt...
De vergelijking van de raaklijn in P(x0,y0) aan de ellips met vergelijking
x2/a2 + y2/b2 = 1
is
x0x/a2 + y0y/b2 = 1
De vergelijking van de loodlijn op die lijn door een brandpunt, bijvoorbeeld het punt F(c,0), kan je dan wel vinden.
En vervolgens bepaal je (met 'wat' rekenwerk), waarbij je ook kan gebruiken dat a2-b2=c2, het snijpunt S van die lijnen.
Het punt S moet dan liggen op de cirkel met vergelijking
x2 + y2 = a2.

Zie De richt- en hoofdcirkel van een ellips (o.a. paragraaf 3) [http://www.pandd.demon.nl/ellips/richtcirkel.htm]

dk
10-10-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#28318 - Analytische meetkunde - Overige TSO-BSO