Bedankt voor de verhelderende uitleg.
Bewijs 1 is me echter nog niet helemaal duidelijk:
Dus: (a+bi)=(m+i)/(m-i)
Hieruit zou ik dan een m-waarde moeten vinden?
Dan bekom ik:
Û am+ bim- ai -bi- m- i=0
Û (a+bi-1)m=(a+b+1)i
Û m= (a+b+1)i/(a+bi-1)
En dan? Hoe kan ik dan verder? Wat doe ik verkeerd?
Groetjes en alvast bedankt...
Sabine
19-9-2004
Dag Sabine
De methode die je volgt is goed. Er zitten wel enkele foutjes in:
(a+bi)= (m+i)/(m-i)
Þ
(a+bi)*(m-i)=m+i
Þ
am-a*i+bm*i+b*i*(-i)=m+i
Þ
am-a*i+bm*i+b=m+i
Þ
am-a*i+bm*i+b-m-i=0
Þ
m(a+b*i-1)+(-a*i+b-i)=0
Þ
m=(i*(a+1)-b)/((a-1)+b*i)
Nu rest ons alleen te bewijzen dat m reëel is. Je moet m herschrijven totdat er geen "i" meer inzit. Hierbij zal ik je wat helpen. Vermenigvuldig teller en noemer met [(a-1)-b*i]. Als je de noemer verder uitwerkt, zal je zien dat die niet meer complex is. Ook de teller wordt reëel, omdat (a2-1+b2)=0. Dit volgt immers uit a2+b2=1. Een getal met een reële teller en een reële noemer, is ook reëel.
Groetjes
Veel succes
Igor
19-9-2004
#27557 - Complexegetallen - 3de graad ASO