WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bewijs omtrent cos 4A + cos4B + cos4C = -1

hallo...ik ben al een tijdje op zoek naar dit bewijs maar kan het nergens vinden

indien in de driehoek abc
cos 4A + cos4B + cos4C = -1

bewijs dan dat een van de hoeken van deze driehoek een veelvoud is van p/4

nico matthijs
22-5-2004

Antwoord

dag Nico,

Het bewijs de andere kant op (met enige aanpassing) is niet moeilijk, maar dat vroeg je ook niet
Toch kan het helpen om inzicht in de materie te krijgen.
Dus eerst even de andere kant op, dat wil zeggen: we weten dat een van de hoeken, zeg bv a, gelijk is aan k·p/4 (voor k=1, 2 of 3)
Dan geldt (vanwege de driehoek):
b = p - a - g
dus
4b = 4p - k·p - 4g = (4-k)·p - g
Maak nu onderscheid tussen oneven en even waarden voor k.
voor k=1 of k=3 geldt: cos(4b) = - cos(4g)
en cos(4a) = -1
Voor k=2 geldt: a=p/2
Dan is cos(4a) = 1, en dan gaat de vergelijking alleen op als zowel b als g gelijk zijn aan p/4.

Nu de oorspronkelijke vraag.
Vanwege de driehoek kun je g uitdrukken in a en b. Vermenigvuldigen met 4 geeft:
4g = 4p - 4a - 4b, dus
cos(4g) = cos(4a+4b).
Noem even x=cos(4a) en y=cos(4b)
De vergelijking wordt dan:
x + y + xy - Ö(1-x2)Ö(1-y2) = -1
Herleiden en kwadrateren levert:
(x+1)2(y+1)2=(1-x)(1+x)(1-y)(1+y)
wat weer leidt tot de oplossingen:
x=-1
y=-1
x=-y
Ofwel
4a=p of
4b=p of
4a+4b=p
Elk van deze oplossingen levert het gewenste resultaat.
Met dank aan medebeantwoorders cl en hk, die bovenstaande vergelijking weer op een andere manier oplossen.
Zie eventueel ook

Zie hoek van 120 graden [http://www.wisfaq.nl/showrecord3.asp?id=22097]

Anneke
23-5-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#24294 - Bewijzen - Iets anders