Los op mbv de drie nulpuntsmethoden:
2sin(x) - x =0 (-0.01y0.01)x0 f(x0) x1 f(x1) x2 f(x2)Mijn vraag is hoe ik nu verder ga met de tweede rij.
0.1 0.099 3 -2.717 0.201 0.199
Moet ik nu x0 veranderen of x1 en moet ik deze dan verhogen of verlagen?
Als ik x1 verander in 3.4 dan krijg ik het volgende:x0 f(x0) x1 f(x1) x2 f(x2)Dit is al dichter bij de 0 maar de grap met deze methode is toch dat je veel minder rijen nodig hebt om bij het nulpunt te komen t.o.v. de bisectie methode?
0.1 0.099 3 -2.717 0.201 0.199
0.1 0.099 3.4 -3.911 0.181 0.179
Ik hoop dat jullie me verder kunnen helpen.
GroetenBram Naardin
15-5-2004
dag Bram,
De keuze om x0 of x1 te vervangen, hangt af van het teken (plus of min) van het product van
f(x0) en f(x2)
Als dit product negatief is, dan weet je zeker dat het interval [x0, x2] het nulpunt bevat, en vervang je dus x1 door x2.
In jouw geval moet je juist x0 vervangen, want
f(x0)·f(x2) 0.
Je krijgt dus als nieuw interval [x1, x2]
Je moet niet zomaar verhogen of verlagen.
groet,
Anneke
19-5-2004
#24032 - Numerieke wiskunde - Student hbo