WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Kettingbreukontwikeling

Hallo team wisfaq,

Ik wil de ketingbreukontwikkeling bepalen van het volgende getal:

x=1/2(n+{(n2)+4}), met n een natuurlijk getal.
Ik weet dat je het grootste getal moet bepalen wat in x zit en de rest ligt dan tussen 0 en 1. Als n gegeven is dan kun je dit met de rekenmachine berekenen, maar hoe doe je dit nu als in de uitdrukking van x, n voorkomt. Dus mijn vraag is eigenlijk, hoe bepaal je het grootste getal wat in x voorkomt?
Groeten en dank,

viky
14-5-2004

Antwoord

Als n voldoende groot verschilt Ö(n2+4) niet zo veel van n.
Hoe groot is dit verschil eigenlijk?
Ö(n2+4)-Ö(n)=
(Ö(n2+4)-Ö(n))*(Ö(n2+4)+Ö(n))/
(Ö(n2+4)+Ö(n))=
=(n2+4-n2)/(Ö(n2+4)+Ö(n))=
4/(Ö(n2+4)+Ö(n)).
Dit is bij benadering gelijk aan 2/n.
Je kunt dus Ö(n2+4) benaderen met n+2/n.
Om je een indruk te geven, zie onderstaande tabel:

Omdat 0<2/n<1 kun je dus vanaf zekere n gewoon n nemen als grootste gehele getal.

hk
14-5-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#23986 - Getallen - Student universiteit