We hebben in de klas het bewijs voor de somregel van limieten gezien, maar die voor verschil blijkt niet analoog te verlopen
Kunnen jullie mij helpen om het volgende te bewijzen:
lim[f(x)-g(x)]=lim f(x)-lim g(x) (alles voor x gaande naar a)Annelies
8-5-2004
Hoi Annelies
ik weet niet goed hoe jullie die somregel voor limieten bewezen hebben. Formeel met $\epsilon$-$\delta$ ?
Stel lim f(x) = F en lim g(x) = G.
Neem $\epsilon$ willekeurig. Bekijk $\epsilon$/2; hierbij hoort een $\delta$1$>$0: |x-a|$<\delta$1 $\Rightarrow$ |f(x)-F|$<$$\epsilon$/2;
en een $\delta$2$>$0: |x-a|$<\delta$2 $\Rightarrow$ |g(x)-G|$<$$\epsilon$/2
Neem nu $\delta$=min($\delta$1,$\delta$2).
Uit |x-a|$<\delta$ $\Rightarrow$ |x-a|$<\delta$1 $\Rightarrow$ |f(x)-F|$<$$\epsilon$/2
(analoog: |g(x)-G|$<$$\epsilon$/2).
Bekijk nu: |f(x)-g(x)-(F-G)| = /f(x)-F +(G-g(x))/ $\leq$ |f(x)-F| + |G-g(x)|
maar |G-g(x)| is toch hetzelfde als |g(x)-G| hé?
Kan je zelf de laatste regel neerschrijven?
Frank
FvE
8-5-2004
#23719 - Limieten - 3de graad ASO