klopt deze redenering :
Toon aan dat de volgende verzamelingen geen deelruimten zijn van ^3
M1={(x,y,z)Î^3; x2=y2}
dus x=y of x=-y
(y,y,z)+(-y,y,z)=(0,2y,2z) en 02¹(2y)2
dank bij voorbaatDirk
13-4-2004
Een deelruimte ??? ligt eraan wat je ermee bedoelt....ik denk dit.
Je moet in ieder geval kijken naar de definities die bij een (vector of lineaire of andere) ruimte horen.
Welnu als aÎM1 en bÎM1 dan zou ook a+bÎM1 moeten zijn.
We zoeken een tegenvoorbeeld:
a=(2,-2,7) en b=(3,3,43) beiden in M1
maar a+b = (5,1,50) zit niet in M1 derhalve is M1 geen deelruimte.
Met vriendelijke groet
JaDeX
jadex
13-4-2004
#22663 - Lineaire algebra - 3de graad ASO