Gegeven: K:6x^2-4xy+9y^2-4x-32y-6=0
Door o gaat een veranderlijke rechte die K snijdt in a en b. Bepaal de meetkundige plaats van het snijpunt van de raaklijnen in a en b.
Bij voorbaat dank,
Deketelaere RobinDeketelaere Robin
6-3-2004
dag Robin,
Je kunt dit probleem analytisch oplossen, met het risico dat je verzandt in een hoop rekenwerk.
Ik zal de aanpak schetsen:
Een veranderlijke rechte door o wordt beschreven met de vergelijking y = p·x
Deze rechte snijden met K geeft een kwadratische vergelijking in x, met parameter p.
De oplossingen van deze vergelijking zijn de x-coördinaten van a en b (uitgedrukt in p).
Dan kun je de vergelijkingen van de raaklijnen in a en b opstellen (uitgedrukt in p) en deze met elkaar snijden. Dit geeft de uitdrukking in p, die de gevraagde meetkundige plaats beschrijft.
Je kunt ook proberen dit probleem vanuit meetkundig oogpunt te bekijken.
Snap je dat de kromme K een ellips is?
De meetkundige plaats die je zoekt, is juist gelijk aan de poollijn van o ten opzichte van K. Deze kun je dus direct berekenen.
Overigens bevat deze poollijn natuurlijk ook punten binnen de ellips. Deze punten kunnen niet op een raaklijn liggen, en horen in die zin niet tot de gezochte meetkundige plaats. Ze horen bij de complexe snijpunten van een rechte door o en de ellips.
groet,
Anneke
6-3-2004
#21099 - Analytische meetkunde - 3de graad ASO