WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

De vierkantsvergelijking oplossen mbv de gulden snede

We moeten voor ons proefielwerkstuk de vierkantsvergelijking bewijzen mbv de gulden snede.
Als je een lijnstuk hebt met de grootte 1 en je verdeelt die lijn in 2 gelijke stukken; x en (1-x). Dan krijg je:
1/(1-x) = (1-x)/x
x = (1-x)2
x = x2 - 2x + 1

maar de vierkantsvergelijking is 0 = x2 - 2x + 1!!!
Wat doen we fout?

Kim en Mylène

Kim
29-1-2004

Antwoord

Je schrijft dat je het lijnstuk verdeelt in twee gelijke stukken.
Maar dat is bij de gulden snede zeker niet het geval!
Op zich klopt de vergelijking x = x2 - 2x + 1 eigenlijk wel. Maar dat daaruit zou volgen: 0 = x2 - 2x + 1 (of is het een typfoutje?).
"Gebruikelijk" is de volgende afleiding.
Stel het punt C verdeelt het lijnstuk AB volgens de gulden snede.
Kies nu AC = x en BC = 1 (dan is: AB = x + 1)
Dan hebben we:
AB : AC = AC : BC
of
(x+1) : x = x : 1
Dit geeft een vierkantsvergelijking. Bereken daaruit de positieve x!

dk
29-1-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#19605 - Lineaire algebra - Leerling bovenbouw havo-vwo