Ik ben op zoek naar een bewijs dat irrationaal is, ik heb wel wat gevonden op internet:
http://pauillac.inria.fr/algo/bsolve/constant/gold/irratio.html
Waarom hebben q en p hier geen gemeenschappelijke factor boven 1? En hoe zit dat met die gemeenschappelijke factor tussen q en p2? Of heeft iemand een nederlands bewijs hiervan? ik weet niet wat al die engelse wiskundige termen in het nederlands zijn..
Alvast bedankt,
AndriesAndries Effting
7-3-2002
Als je schrijft als een breuk (p/q) ga je er van uit dat de breuk zo ver mogelijk vereenvoudigd is. Dat betekent dat p en q geen gemeenschappelijke delers hebben, d.w.z. dat de grootste gemeenschappelijke 1 is.
Bij de tweede opmerking geldt hetzelfde, omdat q een deler is van p2, maar geen andere gemeenschappelijke delers heeft dan 1, moet q wel 1 zijn.
Wat dan volgt is dat p en q beide 1 zijn en dat klopt niet... dus is het niet mogelijk te schrijven als p/q.Zie Proof that the Golden Mean is Irrational [http://pauillac.inria.fr/algo/bsolve/constant/gold/irratio.html]
WvR
7-3-2002
#1943 - Fibonacci en gulden snede - Leerling bovenbouw havo-vwo