WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Injectie, afbeelding

hoi,
:d
ik heb ff een vraagje ( eigenlijk twee).

f een afbeelding van E naar F
A en A' twee deelverzamelingen van E.
toon aan f(AÇA') Ìf(A)Çf(A')
laat zien als f injectief is dat
f(AÇA') =f(A)Çf(A')
de 1e vraag:

eerst wil ik bewijzen dat: als BÌ C dat f(B)Ìf(C) :
f(C) is het beeld van alle elementen van C onder de afbeelding f, en omdat elk element van B ook een element van C, is f(B)Ìf(C) .
we hebben:
AÇA' Ì A en AÇA' Ì A'
volgens wat we net hebben 'bewezen':
(1) f(AÇA') Ìf(A) en f(AÇA') Ì(A')
dit laatste betekent dat f(AÇA') Ìf(A)Çf(A')
nu wil ik aantonen dat:
(2) f(A)Çf(A') Ì f(AÇA')
want dan kan ik concluderen dat
f(AÇA') =f(A)Çf(A')
graag uw hulp!


Morgen2004
3-1-2004

Antwoord

Hallo Morgen2004,

De eerste vraag heb je helemaal goed beantwoord.
Vraag 2:
Als f(A)Çf(A')=Æis het vanzelf zo dat f(A)Çf(A')Ìf(AÇA').
Als de verzameling niet leeg is:
Stel bÎf(A)Çf(A'),hieruit volgt dat bÎf(A) en bÎf(A'),er geldt dat b zeker een origineel heeft.Laat aÎA zó dat f(a)=b,m.a.w. laat a de origineel zijn van b.

Stel nu a'ÎA' zó dat f(a')=b=f(a),omdat f is injectief volgt hieruit dat a'=a.
Dus dat betekent aÎA' en dus ook aÎAÇA'
Hieruit kan je concluderen dat bÎf(AÇA').
Conclusie:f(A)Çf(A')Ìf(AÇA') en dus omdat je bij vraag 1 al de omgekeerde heb bewezen:
f(AÇA')=f(A)Çf(A').

CW
3-1-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#18208 - Verzamelingen - Student hbo