WisFaq!

\require{AMSmath} geprint op woensdag 27 november 2024

Re: Een punt op een cirkel berekenen adhv een rotatie

Gegeven:
# Middelpunt: (5;5)
# Punt a: (8;8)
# Rotatie: 20°

Ingevuld:
bx = 8.0,94 - 8.0,34 = 4,8 + 5 = 9,8
by = 8.0,94 + 8.0,34 = 10,24 + 5 = 15,24

Punt b zou dus (9,8 ; 15,24) zijn. Als de rotatie tegen de klok in loopt, zou het punt b volgens
een tekening nochtans rond het punt (9 ; 6,5) moeten liggen.

Wat heb ik (weeral) verkeerd gedaan?

E Geysen
9-12-2003

Antwoord

Misschien was mijn uitleg niet volledig.
De coördinaat a(xa,ya) is de coördinaat t.o.v. je assenstelsel met het middelpunt van de cirkel als oorsprong.

q17332img1.gif
Eerst verschuiven we het assenstelsel tot de oorsprong samenvalt met het middelpunt van de cirkel.
De coördinaat van a tov dat nieuwe (X',Y')-assenstelsel is dan a(3,3).

Toepassing van de formules geeft ons voor de b(x'b,y'b) in het (X',Y')-assenstelsel:
x'b=3cos(20°)-3sin(20°)=1.79
y'b=3cos(20°)+3sin(20°)=3.845

Dus: b(xb,yb) = (6.79, 8.845) in het oorspronkelijke assenstelsel.

Mvg,

Els
10-12-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#17332 - Goniometrie - Student Hoger Onderwijs België