q= aantal auto's per maand, p= gevraagd verkoopprijs. r=omzet en k= kosten q=600 - 0,5 p
de omzet hangt ook af van p. geef de bijbehorende formule.
bereken de omzet van de maand.
w=-0,5 p kwadraat + 600 p - 5000 w= winst
bepaal de maximale winst en leg uit hoe je aan de antwoord hebt gevonden.
hoeveel auto's moet je per maand verkopen om die maximale winst te krijgen?
voor welke waarden van p is de winst hoger dan 1.50.000 euro. leg uit hoe je aan de antwoord hebt gevonden...hanane
8-12-2003
Als je q auto's verkoopt voor een prijs p per stuk, dan ontvang je q.p euro's.
Omdat q uitgedrukt is in p, heb je de variabele q niet echt nodig. Je kunt namelijk schrijven omzet = (600-0,5p).p en dat kun je eventueel uitwerken tot omzet = 600p - 0,5p2.
w= -0,5p2 + 600p - 5000. Hierin kun je herkennen de formule van een bergparabool. Schrijf voor de letter p maar eens gewoon een letter x!
Een bergparabool heeft een hoogste punt (dus ook een maximum) en de p-waarde daarvan is -b/2a = -600/-1 = 600.
De beste prijs is dus p = 600 (niet erg duur! Wat is in deze som eigenlijk de eenheid?)
Voor de laatste vraag zou je de winstformule gelijk kunnen stellen aan 150000 en (abc-formule) de p-waarden kunnen bepalen. Je zou ook (rekenmachine?) tabellen kunnen maken en kijken wanneer de grens van 150000 wordt overschreden.
Het hangt er maar vanaf welke methoden je tot je beschikking hebt.
MBL
8-12-2003
#17275 - Lineair programmeren - Leerling mbo