Een veelhoek heeft 170 diagonalen. Hoeveel zijden heeft deze veelhoek? Graag wat hulp. We weten alleen dat het iets te maken heeft met het bereken van de discriminant.stijn
10-11-2003
Om een diagonaal te krijgen kun je een hoekpunt niet met zichzelf of een van zijn buren verbinden.
Bij een zeshoek kun je een hoekpunt dus verbinden met 6-3=3 andere punten.
Je kunt dit doen vanuit elk van de zes hoekpunten maar dan tel je de diagonalen wel dubbel.
Bij een zeshoek kun je dus 1/2.6.3=9 diagonalen tekenen.
Je weet dat een veelhoek evenveel zijden als hoekpunten heeft.
We nemen nu een n-hoek.
Vanuit een hoekpunt kun je dus n-3 diagonalen tekenen.
Dit kan vanuit elk hoekpunt, maar dan tel je de diagonalen wel dubbel.
Dus het aantal diagonalen van een n-hoek is 1/2n(n-3), en dit moet gelijk zijn aan 170.
Kunnen jullie dit nu verder oplossen?
hk
10-11-2003
#16003 - Telproblemen - 2de graad ASO