WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Vergelijking onoplosbaar?

Hey,

Ik heb volgende vergelijking gekregen die ik moet oplossen.

sin(x) - sin3(x) - sin(x)·cos2(x) - 1 = tan(x) · cot(x)
sin(x) · (1 - sin2(x) - cos2(x) - cos2(x)/sin2(x) - sin(x) = 1
sin(x) · (cos2(x) - cos2(x) - cos2(x)/sin2(x) - sin(x) = 1
sin(x) · (-cos2(x) - sin2(x)/sin(x)) = 1
-cos2(x) - sin2(x) = 1
-1 = 1

Ik kom steeds -1 = 1 uit. Kan u zien wat ik fout gedaan heb? ik zit hier namelijk al enkele uren op te kijken zonder resultaat.

dank u!

Stijn
15-10-2003

Antwoord

Hoi Stijn,
Het lijkt of wat je tussen de eerste en tweede regel doet niet klopt. Maar als ik zelf de vergelijking probeer op te lossen kom ik er ook op uit dat de vergelijking niet klopt.

sin(x) - sin3(x) - sin(x)·cos2(x) - 1 = tan(x) · cot(x) (1)


tan(x) = sin(x)/cos(x)
cot(x) = 1/tan(x)=cos(x)/sin(x)

tan(x) · cot(x) = 1 (2)

uit (1) en (2) volgt:
sin(x) - sin3(x) - sin(x)·cos2(x) - 1 = 1
sin(x) - sin3(x) - sin(x)·cos2(x) = 2
sin(x)·[1 - sin2(x) - cos2(x)] = 2 (3)

sin2(x)+cos2(x) = 1 (4)
uit (3) en (4) volgt:
sin(x)·[1 - 1] = 2

Wat tot een tegenspraak leidt.


gm
15-10-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#15175 - Goniometrie - Iets anders