Er is dus sprake van een gelijkbenige driehoek. Hoek A en Hoek C liggen beide op de grond. Hoek B is dus in mijn belevingswereld de hoek op de top van de driehoek (in de nok van het dak).
Gelijk is gelijk : 2x 50 = 100 180 -/- 100 = 80. Hoek B is dus 80- graden. Als ik een loodlijn neerlaat, dan zou hoek B' dus 40 graden zijn.
Ik heb dus nodig de loodlijn uit hoek B, en kwam toen met veel gegoochel op 13,32 m. Maar is dat goed?
Willem Hajee
22-9-2003
Je blijft tegenstrijdige dingen schrijven. Als hoek A en C aan elkaar gelijk zijn en verschillend van hoek B, hoe kunnen dan AC en BC gelijk zijn aan 1780mm, zoals je beweert in je oorspronkelijke opgave?
Ik zal even gokken wat je bedoelt.
De halve hoek B is dan inderdaad 40°, en de gevraagde x wordt gegeven door.
x = AB.cos(40°) = 1363,5591... mm
cl
22-9-2003
#14528 - Vlakkemeetkunde - Iets anders