Ik kom niet uit de volgende vraag:
Een veranderlijke rechthoek heeft een deel van de x-as als basis. De twee andere hoekpunten liggen op de bergparabool y=4-x2. Hoe bereken ik de afmetingen van de rechthoek zodat de omtrek maximaal is? De top is (0,4) en de nulpunten van de parabool zijn (-2,0) en (2,0). Kunnen jullie me helpen? Alvast Bedankt!
Marc
Marc Hilhorst
18-9-2003
Eerst maar eens een tekening:
Noemen we het hoekpunt rechtsboven P(x,y) dan kan je de omtrek uitdrukken in x. Ga maar na!
Onder en boven: 2x
Links en rechts: 4-x2
Totale omtrek:
O(x)=....
Wanneer is O(x) maximaal? Voor x=...
...dit laatste kan met de afgeleide of met je GR. Zou dat lukken denk je?
P.S.
...of hadden we het zo kunnen zien!?!?
WvR
18-9-2003
#14418 - Functies en grafieken - Leerling bovenbouw havo-vwo