WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

X² - toets

Bij een onderzoek naar de gewichten van pruimen zijn de pruimen a-select gekozen en ingedeeld in verschillende klassen. De verwachtingswaarde is 72gram en de standaarddeviatie 25gram. In totaal zijn er 8 klassen gemaakt. Bij de uitkomst staat dat we hier mogen benaderen met chi-kwadraat-verdeling met als aantal vrijheidsgraden:

DF = aantal klassen - aantal geschatte parameters - 1
ofwel
DF = 8 - 2 -1 = 5

Mijn vraag is, hoe komen ze aan die 2 geschatte parameters?

Alvast bedankt,

Herman

Herman
15-9-2003

Antwoord

Elke opgegeven parameter kost je in principe een extra vrijheidsgraad. Wanneer je zou toetsen op een willekeurige normale verdeling dan geldt de formule n-1 vrijheidsgraden. Nu leg je van de verdeling twee (m=72 en s-25) extra waarden concreet vast dan verlies je daardoor ook twee vrijheidsgraden.

Met vriendelijke groet

JaDeX

jadex
16-9-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#14301 - Kansverdelingen - Student hbo