WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Nulpunten van f(z)

Hoe kan ik het volgende bewijzen: als het imaginaire getal a+bi (a element van R en b element van R/0) nulpunt is van eenveelterm f(x) met reële coefficiënt dan is ook het toegevoegd complex gatal a-bi nulpunt van f(z)
ik moet het op een speciale manier bewijzen nl. te beginnen met (anzo^n + a(n-1)zo^n-1 + ... + a1zo + ao (met zo=a+bi en f(zo)=0)

carmen de pauw
30-1-2002

Antwoord

We bekijken (a+bi)p (met p>0 en p geheel). De ontwikkeling hiervan bevat reele termen en imaginaire (de termen met i).
Bij de reele termen behoren de even machten van b, bij de imaginaire behoren de oneven machten van b.
Dit geldt voor iedere p.
We vinden zo F(a+bi) = M + Ni
Uit F(a+bi) = 0 volgt M = 0 en N = 0.
We bekijken nu F(a-bi).
We vervangen blijkbaar overal in de ontwikkeling van F(a+bi) de b door -b. Dan heeft deze vervanging alleen invloed op de oneven waarden van p, dus alleen op N.
Hierdoor vinden we F(a-bi) = M - Ni.
Maar M=0 en N=0, dus F(a-bi) = 0.

dk
31-1-2002


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#1315 - Complexegetallen - Iets anders