WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Vergelijking

ik heb volgende vergelijking die ik moet oplossen : z2(1-z2) = 16

wel effe uitrekenen levert : -z4+z2-16 = 0

of z4-z2+16 = 0
en dan stel ik z2=y dit levert dan weer : y2-y+16=0

nu D=(-)12-4x16x1 === D0 === geen oplossing , kan dit? ik moet hier van elke oplossing het imaginaire en reële gedeelte geven , maar volgens mij zijn er geen oplossingen , of doe ik iets fout met gewoon een 2de graagsvergelijking toe te passen en op te lossen.

Dzorg
25-6-2003

Antwoord

Je doet niets fout, maar je reactie "er zijn geen oplossingen" is niet meer geldig wanneer je met complexe getallen aan de slag gaat.
De discriminant is inderdaad gelijk aan -63, en dat is in de 'gewone' getallenwereld genoeg om het oordeel 'onoplosbaar' te laten horen.
Maar het geinige van de complexe getallen is nu juist dat Ö(-63) nou juist wél kan! Namelijk Ö(-63) = Ö(63 x -1) = Ö(63) x Ö(-1) = Ö(63) x i
Verder kom je er nu vast wel uit.

MBL
25-6-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#12793 - Complexegetallen - Iets anders