WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Integreren van e functie

Hallo, Ik moet de volgende onbepaalde integraal oplossen.

òe^(4x+1)

Ik was al zo ver dat e^(4x+1) blijft staan, dan moet ik nog de kettingregel toepassen. Daar loop ik dus vast. Kunnen jullie het me uitleggen?

Linda
9-6-2003

Antwoord

Hoi Linda,

Als je e^(4x+1) differentieert, komt daar 4*e^(4x+1) uit (kettingregel). Dus:

ò4*e^(4x+1)dx=e^(4x+1)

Er geldt (veelvoudregel; je kunt de 4 buiten de integraal halen):

ò4*e^(4x+1)dx=4òe^(4x+1)dx=e^(4x+1)

dus

òe^(4x+1)dx=(1/4)*e^(4x+1)

Je kunt ook zo redeneren: omdat de vier bij differentieren voor de e-macht komt te staan, moet je die 'ongedaan maken' door die factor 1/4.

groet,

Casper

cz
9-6-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#12245 - Integreren - Leerling bovenbouw havo-vwo