WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Lengte van de lijn van een parabool

Hallo mensen,

Ik wil de lengte van een lijn van een parabool bereken
(van en tot bepaalde x-waarden mischien?).
Je kunt die lengte natuurlijk benaderen met de stelling van Phytagoras, maar ik zoek een nauwkeurigere en betere oplossing.

Kunt u mij bij dit probleem helpen?

Leon
27-5-2003

Antwoord

De lengte van een kromme berekenen vergt 'integraalrekenen', iets wat je later nog zal leren. Daarom geef ik je hier enkel het eindresultaat.

We willen de lengte van de parabool y=kx2 tussen x=a en x=b. Definieer de functie F als

F(x) = 1/2x√(1+4k2x2) + (1/(4k)) ln(2kx+√(1+4k2x2))

Hierin is ln de natuurlijke logaritme, die je ook op je rekentoestel vindt. De gevraagde lengte wordt nu gegeven door

L = F(b)-F(a)

cl
27-5-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#11713 - Functies en grafieken - Leerling bovenbouw havo-vwo