WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Statistisch onafhankelijke gebeurtenissen

Bewijs dat als de gebeurtenissen A en B onafhankelijk zijn, dan zijn ook de complementen van deze gebeurtenissen onafhankelijk. Alvast bedankt...

piet
8-5-2003

Antwoord

Ik noem het complement van A voortaan nA.
Als A en B onafhankelijk zijn, geldt: P(A én B) = P(A)·P(B).

P(nA én B) = P(B) - P(A én B) = P(B) - P(A)·P(B) = P(B)·(1 - P(A)) = P(nA)·P(B)
P(nA én nB) = P(nA) - P(nA én B) = P(nA) - P(nA)·P(B) = P(nA)·(1 - P(B)) = P(nA)·P(nB).

Bewezen is dus P(nA én nB) = P(nA)·P(nB), dus de complementen van A en B zijn ook onafhankelijk.

jr
9-5-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#10768 - Statistiek - Ouder