![]() |
De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||
|
\require{AMSmath}
![]() ![]() ![]() Voorbeeld 2\eqalign{ & f(x) = \frac{{x^2 + 2x - 12}} {{3x(x + 2)}} \cr & f'(x) = \frac{{\left( {2x + 2} \right)\left( {3x(x + 2)} \right) - \left( {x^2 + 2x - 12} \right)\left( {6x + 6} \right)}} {{\left( {3x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {x(x + 2)} \right) - 6\left( {x^2 + 2x - 12} \right)\left( {x + 1} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x(x + 2)} \right) - \left( {x^2 + 2x - 12} \right)} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x^2 + 2x} \right) - \left( {x^2 + 2x - 12} \right)} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{72\left( {x + 1} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{8\left( {x + 1} \right)}} {{x^2 \left( {x + 2} \right)^2 }} \cr} ![]() ![]() ![]() home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2025 WisFaq - versie 3 |