De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

4. De afgeleide

Definitie

$
\eqalign{
& De{\text{ }}afgeleide{\text{ }}f'(x){\text{ }}wordt{\text{ }}gedefinieerd{\text{ }}als: \cr
& f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}
{{\Delta x}} \cr}
$

Voorbeeld

$
\eqalign{
& f:y = x^2 - 4x + 4 \cr
& f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}
{{\Delta x}} = \cr
& f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left( {x + \Delta x} \right)^2 - 4\left( {x + \Delta x} \right) + 4 - \left( {x^2 - 4x + 4} \right)}}
{{\Delta x}} = \cr
& f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{x^2 + 2 \cdot \Delta x \cdot x + \left( {\Delta x} \right)^2 - 4x - 4 \cdot \Delta x + 4 - x^2 + 4x - 4}}
{{\Delta x}} = \cr
& f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2 \cdot \Delta x \cdot x + \left( {\Delta x} \right)^2 - 4 \cdot \Delta x}}
{{\Delta x}} = \cr
& f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} 2 \cdot x + \Delta x - 4 = \cr
& f'(x) = 2x - 4 \cr}
$

Vooral in het laatste stukje zit een 'aardige' wending. Omdat $\Delta$x niet nul is kan je in de teller en noemer deze factor wegdelen. In de stap daarna zeg je dan dat $\Delta$x nadert naar nul, dus kunnen we deze term weglaten.

De afgeleide of hellingsfunctie (in dit voorbeeld f'(x)=2x-4) geeft voor elk waarde van 'x' de helling in het punt (x,f(x)) van de functie f.

Rekenregels

Voor het bepalen van de afgeleide is het niet nodig om steeds deze limiet op deze manier te bepalen. Voor het bepalen van de afgeleide of hellingfunctie gebruiken we een aantal rekenregels. Deze worden op de volgende pagina besproken.


home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3