Overzicht goniometrie
Uit je hoofd leren:
Tabellen
|
|
Formules
-\sin(x)=\sin(-x) | \sin(x)=\cos(\frac{1}{2}\pi-x) | \eqalign{\tan(x)=\frac{\sin(x)}{\cos(x)}} |
-\cos(x)=\cos(x-\pi) | \cos(x)=\sin(\frac{1}{2}\pi-x) | \sin^2(x)+\cos^2(x)=1 |
-\tan(x)=\tan(-x) | \sin(2x)=2\sin(x)\cos(x) | \cos (2x) = \left\{ \begin{array}{l} 2\cos ^2 (x) - 1 \\ 1 - 2\sin ^2 (x) \\ \cos ^2 (x) - \sin ^2 (x) \\ \end{array} \right. |
Methode
\begin{array}{l} \sin (x) = \sin (A) \\ x = A + k \cdot 2\pi \vee x = \pi - A + k \cdot 2\pi \\ \end{array} |
\begin{array}{l} \cos (x) = \cos (A) \\ x = A + k \cdot 2\pi \vee x = - A + k \cdot 2\pi \\ \end{array} |
\begin{array}{l} \tan (x) = \tan (A) \\ x = A + k \cdot \pi \\ \end{array} |
Bijzondere gevallen
\eqalign{ & \sin (x) = 0 \cr & x = 0 + k \cdot \pi \cr} | \eqalign{ & \sin (x) = 1 \cr & x = \frac{1} {2}\pi + k \cdot 2\pi \cr} | \eqalign{ & \sin (x) = - 1 \cr & x = 1\frac{1} {2}\pi + k \cdot 2\pi \cr} |
\eqalign{ & \cos (x) = 0 \cr & x = \frac{1} {2}\pi + k \cdot \pi \cr} | \eqalign{ & \cos (x) = 1 \cr & x = 0 + k \cdot 2\pi \cr} | \eqalign{ & \cos (x) = - 1 \cr & x = \pi + k \cdot 2\pi \cr} |
©wiswijzer.nl
F.A.Q.'s
- Exacte waarden sinus, cosinus en tangens
- Periodieke functies
- Vergelijkingen met sinus, cosinus en tangens