|
|
$-\sin(x)=\sin(-x)$ | $\sin(x)=\cos(\frac{1}{2}\pi-x)$ | $\eqalign{\tan(x)=\frac{\sin(x)}{\cos(x)}}$ |
$-\cos(x)=\cos(x-\pi)$ | $\cos(x)=\sin(\frac{1}{2}\pi-x)$ | $\sin^2(x)+\cos^2(x)=1$ |
$-\tan(x)=\tan(-x)$ | $\sin(2x)=2\sin(x)\cos(x)$ | $ \cos (2x) = \left\{ \begin{array}{l} 2\cos ^2 (x) - 1 \\ 1 - 2\sin ^2 (x) \\ \cos ^2 (x) - \sin ^2 (x) \\ \end{array} \right. $ |
$ \begin{array}{l} \sin (x) = \sin (A) \\ x = A + k \cdot 2\pi \vee x = \pi - A + k \cdot 2\pi \\ \end{array} $ |
$ \begin{array}{l} \cos (x) = \cos (A) \\ x = A + k \cdot 2\pi \vee x = - A + k \cdot 2\pi \\ \end{array} $ |
$ \begin{array}{l} \tan (x) = \tan (A) \\ x = A + k \cdot \pi \\ \end{array} $ |
$ \eqalign{ & \sin (x) = 0 \cr & x = 0 + k \cdot \pi \cr} $ |
$ \eqalign{ & \sin (x) = 1 \cr & x = \frac{1} {2}\pi + k \cdot 2\pi \cr} $ |
$ \eqalign{ & \sin (x) = - 1 \cr & x = 1\frac{1} {2}\pi + k \cdot 2\pi \cr} $ |
$ \eqalign{ & \cos (x) = 0 \cr & x = \frac{1} {2}\pi + k \cdot \pi \cr} $ |
$ \eqalign{ & \cos (x) = 1 \cr & x = 0 + k \cdot 2\pi \cr} $ |
$ \eqalign{ & \cos (x) = - 1 \cr & x = \pi + k \cdot 2\pi \cr} $ |
©wiswijzer.nl