Voorbeelden III
Voorbeeld 1
\eqalign{ & \sin \left( {2t + \frac{1} {3}\pi } \right) = 0 \cr & 2t + \frac{1} {3}\pi = 0 + k \cdot \pi \cr & 2t = \frac{2} {3}\pi + k \cdot \pi \cr & t = \frac{1} {3}\pi + k \cdot \frac{1} {2}\pi \cr}
Voorbeeld 2
\eqalign{ & 2\cos \left( {x + \frac{\pi } {4}} \right) = \sqrt 2 \cr & \cos \left( {x + \frac{\pi } {4}} \right) = \frac{1} {2}\sqrt 2 \cr & x + \frac{\pi } {4} = \frac{\pi } {4} + k \cdot 2\pi \vee x + \frac{\pi } {4} = - \frac{\pi } {4} + k \cdot 2\pi \cr & x = k \cdot 2\pi \vee x = - \frac{\pi } {2} + k \cdot 2\pi \cr & x = k \cdot 2\pi \vee x = 1\frac{1} {2}\pi + k \cdot 2\pi \cr}