$\Large\frac{x+17}{(x+3)(x-4)}=\frac{...}{x+3}+\frac{...}{x-4}=\frac{...\cdot(x-4)+...\cdot(x+3)}{(x+3)(x-4)}$
Dan is de vraag wat er op de puntje moet staan. In dit geval kunnen we volstaan met getallen. We kiezen daarvoor A en B en werken de uitdrukking verder uit:
$
\eqalign{
& \frac{{x + 17}}
{{\left( {x + 3} \right)\left( {x - 4} \right)}} = \frac{A}
{{x + 3}} + \frac{B}
{{x - 4}} = \frac{{A \cdot \left( {x - 4} \right) + B \cdot \left( {x + 3} \right)}}
{{\left( {x + 3} \right)\left( {x - 4} \right)}} \cr
& A \cdot \left( {x - 4} \right) + B \cdot \left( {x + 3} \right) = x + 17 \cr
& Ax - 4A + Bx + 3B = x + 17 \cr
& (A + B)x + ( - 4A + 3B) = x + 17 \cr}
$
$
\cases{A + B = 1 \Rightarrow A = 1 - B\\-4A + 3B = 17}
$
$
\eqalign{
& - 4\left( {1 - B} \right) + 3B = 17 \cr
& - 4 + 4B + 3B = 17 \cr
& 7B = 21 \cr
& B = 3 \cr
& A = 1 - 3 = - 2 \cr
& We\,\,zien: \cr
& \frac{{x + 17}}
{{\left( {x + 3} \right)\left( {x - 4} \right)}} = \frac{{ - 2}}
{{x + 3}} + \frac{3}
{{x - 4}} \cr}
$
$
\eqalign{
& \frac{1}
{{x^{3} - 2x^{2} - 5x + 6}} = \cr
& \frac{A}
{{x - 3}} + \frac{B}
{{x - 1}} + \frac{C}
{{x + 2}} = \cr
& \frac{{A\left( {x - 1} \right)\left( {x + 2} \right)}}
{{\left( {x - 3} \right)\left( {x - 1} \right)\left( {x + 2} \right)}} + \frac{{B\left( {x - 3} \right)\left( {x + 2} \right)}}
{{\left( {x - 3} \right)\left( {x - 1} \right)\left( {x + 2} \right)}} + \frac{{C\left( {x - 3} \right)\left( {x - 1} \right)}}
{{\left( {x - 3} \right)\left( {x - 1} \right)\left( {x + 2} \right)}} \Rightarrow \cr
& A\left( {x - 1} \right)\left( {x + 2} \right) + B\left( {x - 3} \right)\left( {x + 2} \right) + C\left( {x - 3} \right)\left( {x - 1} \right) = 1 \cr
& A\left( {x^{2} + x - 2} \right) + B\left( {x^{2} - x - 6} \right) + C\left( {x^{2} - 4x + 3} \right) = 1 \cr
& Ax^{2} + Ax - 2A + Bx^{2} - Bx - 6B + Cx^{2} - 4Cx + 3C = 1 \cr
& \left( {A + B + C} \right)x^{2} + \left( {A - B - 4C} \right)x + \left( { - 2A - 6B + 3C} \right) = 1 \cr}
$
$
\cases{A + B + C = 0\\A-B-4C=0\\-2A-6B+3C=1}
$
$
\eqalign{
& \left\{ \matrix{
A = {1 \over {10}} \cr
B = - {1 \over 6} \cr
C = {1 \over {15}} \cr} \right. \cr
& {1 \over {x^3 - 2x^2 - 5x + 6}} = {1 \over {10(x - 3)}} - {1 \over {6\left( {x - 1} \right)}} + {1 \over {15(x + 2)}} \cr}
$