$\begin{array}{l} \left\{ \begin{array}{l} x + y = 2 \\ y = x^2 + 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} x + x^2 + 2 = 2 \\ y = x^2 + 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} x^2 + x = 0 \\ y = x^2 + 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} x(x + 1) = 0 \\ y = x^2 + 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} x = 0 \\ y = x^2 + 2 \\ \end{array} \right. \vee \left\{ \begin{array}{l} x = - 1 \\ y = x^2 + 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} x = 0 \\ y = 2 \\ \end{array} \right. \vee \left\{ \begin{array}{l} x = - 1 \\ y = 3 \\ \end{array} \right. \\ \end{array}$
De oplossing: $(-1,3)$ en $(0,2)$