\require{AMSmath} Nog een voorbeeld $ \eqalign{ & \sqrt {11 - x} - \sqrt {x + 6} = 3 \cr & \left( {\sqrt {11 - x} - \sqrt {x + 6} } \right)^2 = 9 \cr & 11 - x - 2\sqrt {11 - x} \cdot \sqrt {x + 6} + x + 6 = 9 \cr & 2\sqrt {\left( {11 - x} \right)\left( {x + 6} \right)} = 8 \cr & \sqrt {\left( {11 - x} \right)\left( {x + 6} \right)} = 4 \cr & \left( {11 - x} \right)\left( {x + 6} \right) = 16 \cr & 11x + 66 - x^2 - 6x = 16 \cr & - x^2 + 5x + 66 = 16 \cr & - x^2 + 5x + 50 = 0 \cr & x^2 - 5x - 50 = 0 \cr & (x - 10)(x + 5) = 0 \cr & x = 10\,\,\,(v.n.)\,\,\, \vee x = - 5 \cr & x = - 5 \cr & {\text{controle}} \cr & \sqrt {11 - - 5} - \sqrt { - 5 + 6} = 3 \cr & \sqrt {16} - \sqrt 1 = 3 \cr & 4 - 1 = 3 \cr & {\text{klopt!}} \cr} $ ©2004-2024 WisFaq
\require{AMSmath}
$ \eqalign{ & \sqrt {11 - x} - \sqrt {x + 6} = 3 \cr & \left( {\sqrt {11 - x} - \sqrt {x + 6} } \right)^2 = 9 \cr & 11 - x - 2\sqrt {11 - x} \cdot \sqrt {x + 6} + x + 6 = 9 \cr & 2\sqrt {\left( {11 - x} \right)\left( {x + 6} \right)} = 8 \cr & \sqrt {\left( {11 - x} \right)\left( {x + 6} \right)} = 4 \cr & \left( {11 - x} \right)\left( {x + 6} \right) = 16 \cr & 11x + 66 - x^2 - 6x = 16 \cr & - x^2 + 5x + 66 = 16 \cr & - x^2 + 5x + 50 = 0 \cr & x^2 - 5x - 50 = 0 \cr & (x - 10)(x + 5) = 0 \cr & x = 10\,\,\,(v.n.)\,\,\, \vee x = - 5 \cr & x = - 5 \cr & {\text{controle}} \cr & \sqrt {11 - - 5} - \sqrt { - 5 + 6} = 3 \cr & \sqrt {16} - \sqrt 1 = 3 \cr & 4 - 1 = 3 \cr & {\text{klopt!}} \cr} $
©2004-2024 WisFaq