\require{AMSmath} Voorbeeld 2 $ \eqalign{ & f(x) = \frac{{x^2 + 2x - 12}} {{3x(x + 2)}} \cr & f'(x) = \frac{{\left( {2x + 2} \right)\left( {3x(x + 2)} \right) - \left( {x^2 + 2x - 12} \right)\left( {6x + 6} \right)}} {{\left( {3x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {x(x + 2)} \right) - 6\left( {x^2 + 2x - 12} \right)\left( {x + 1} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x(x + 2)} \right) - \left( {x^2 + 2x - 12} \right)} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x^2 + 2x} \right) - \left( {x^2 + 2x - 12} \right)} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{72\left( {x + 1} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{8\left( {x + 1} \right)}} {{x^2 \left( {x + 2} \right)^2 }} \cr} $ ©2004-2024 WisFaq
\require{AMSmath}
$ \eqalign{ & f(x) = \frac{{x^2 + 2x - 12}} {{3x(x + 2)}} \cr & f'(x) = \frac{{\left( {2x + 2} \right)\left( {3x(x + 2)} \right) - \left( {x^2 + 2x - 12} \right)\left( {6x + 6} \right)}} {{\left( {3x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {x(x + 2)} \right) - 6\left( {x^2 + 2x - 12} \right)\left( {x + 1} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x(x + 2)} \right) - \left( {x^2 + 2x - 12} \right)} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x^2 + 2x} \right) - \left( {x^2 + 2x - 12} \right)} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{72\left( {x + 1} \right)}} {{9\left( {x\left( {x + 2} \right)} \right)^2 }} \cr & f'(x) = \frac{{8\left( {x + 1} \right)}} {{x^2 \left( {x + 2} \right)^2 }} \cr} $
©2004-2024 WisFaq