\require{AMSmath} naschrift $ \eqalign{ & 4x^2 - 16x + 4y^2 + 4y + 1 = 0 \cr & 4x^2 - 16x + 4y^2 + 4y = - 1 \cr & x^2 - 4x + y^2 + y = - \frac{1} {4} \cr & (x - 2)^2 - 4 + \left( {y - \frac{1} {2}} \right)^2 - \frac{1} {4} = - \frac{1} {4} \cr & (x - 2)^2 + \left( {y - \frac{1} {2}} \right)^2 = 4 \cr} $ ©2004-2024 WisFaq
\require{AMSmath}
$ \eqalign{ & 4x^2 - 16x + 4y^2 + 4y + 1 = 0 \cr & 4x^2 - 16x + 4y^2 + 4y = - 1 \cr & x^2 - 4x + y^2 + y = - \frac{1} {4} \cr & (x - 2)^2 - 4 + \left( {y - \frac{1} {2}} \right)^2 - \frac{1} {4} = - \frac{1} {4} \cr & (x - 2)^2 + \left( {y - \frac{1} {2}} \right)^2 = 4 \cr} $
©2004-2024 WisFaq