L0
{}^a\log (b) + {}^a\log (c) = {}^a\log (b \cdot c)
{}^a\log (b) - {}^a\log (c) = {}^a\log (\frac{b}{c})
L1
\begin{array}{l}
{}^a\log (b) = c \Rightarrow a^c = b \\
(a > 0 \wedge a \ne 1 \wedge b > 0) \\
\end{array}
L2
\eqalign{\begin{array}{l}
{}^a\log \left( b \right) = \frac{{\log \left( b \right)}}{{\log \left( a \right)}} \\
(zie\,\,*) \\
\end{array}}
L3
^a \log \left( {b^p } \right) = p \cdot {}^a\log (b)
L4
a^{{}^a\log (b)} = b
*)
L2 uitgebreid
\eqalign{\begin{array}{l}
{}^a\log \left( b \right) = \frac{{{}^g\log \left( b \right)}}{{{}^g\log \left( a \right)}} \\
(g > 0) \\
\end{array}}