\require{AMSmath} M. Extra oefeningen a. $\eqalign{ f(x) = \frac{{1 - x}} {{\sqrt x }}} $ b. $\eqalign{ f(x) = \frac{{2x - 3}} {{\sqrt {5x + 1} }}} $ c. $\eqalign{f(x) = \frac{{\sqrt {2x + 5} }}{{3x - 1}}}$ d. $\eqalign{f(x) = \frac{{2x + 3}}{{\sqrt {x - 1} }}}$ e. $\eqalign{f(x) = \frac{{\sqrt x - 1}}{{3{x^2} - 4}}}$ f. $\eqalign{f(x) = \left( {2{x^3} - 2} \right) \cdot \sqrt {x + 1}}$ g. $\eqalign{f(x) = \left( {{{x(x - 1)} \over {5 - x}}} \right)^5}$ Uitwerkingen ©2004-2024 WisFaq
\require{AMSmath}
a. $\eqalign{ f(x) = \frac{{1 - x}} {{\sqrt x }}} $ b. $\eqalign{ f(x) = \frac{{2x - 3}} {{\sqrt {5x + 1} }}} $ c. $\eqalign{f(x) = \frac{{\sqrt {2x + 5} }}{{3x - 1}}}$ d. $\eqalign{f(x) = \frac{{2x + 3}}{{\sqrt {x - 1} }}}$ e. $\eqalign{f(x) = \frac{{\sqrt x - 1}}{{3{x^2} - 4}}}$ f. $\eqalign{f(x) = \left( {2{x^3} - 2} \right) \cdot \sqrt {x + 1}}$ g. $\eqalign{f(x) = \left( {{{x(x - 1)} \over {5 - x}}} \right)^5}$
b. $\eqalign{ f(x) = \frac{{2x - 3}} {{\sqrt {5x + 1} }}} $
c. $\eqalign{f(x) = \frac{{\sqrt {2x + 5} }}{{3x - 1}}}$
d. $\eqalign{f(x) = \frac{{2x + 3}}{{\sqrt {x - 1} }}}$
e. $\eqalign{f(x) = \frac{{\sqrt x - 1}}{{3{x^2} - 4}}}$
f. $\eqalign{f(x) = \left( {2{x^3} - 2} \right) \cdot \sqrt {x + 1}}$
g. $\eqalign{f(x) = \left( {{{x(x - 1)} \over {5 - x}}} \right)^5}$
Uitwerkingen
©2004-2024 WisFaq