Voorbeeld 1
$
\eqalign{
& \sin \left( {2t + \frac{1}
{3}\pi } \right) = 0 \cr
& 2t + \frac{1}
{3}\pi = 0 + k \cdot \pi \cr
& 2t = \frac{2}
{3}\pi + k \cdot \pi \cr
& t = \frac{1}
{3}\pi + k \cdot \frac{1}
{2}\pi \cr}
$
Voorbeeld 2
$
\eqalign{
& 2\cos \left( {x + \frac{\pi }
{4}} \right) = \sqrt 2 \cr
& \cos \left( {x + \frac{\pi }
{4}} \right) = \frac{1}
{2}\sqrt 2 \cr
& x + \frac{\pi }
{4} = \frac{\pi }
{4} + k \cdot 2\pi \vee x + \frac{\pi }
{4} = - \frac{\pi }
{4} + k \cdot 2\pi \cr
& x = k \cdot 2\pi \vee x = - \frac{\pi }
{2} + k \cdot 2\pi \cr
& x = k \cdot 2\pi \vee x = 1\frac{1}
{2}\pi + k \cdot 2\pi \cr}
$